Random sample :

- a subset or portion of a population or set that has been selected without \square
- each member of the population has an \qquad of selection
- Though not cases, for \qquad population member can be chosen, it is still possible, in some \square population member to have an \square (or nearly \qquad) chance of

Sampling bias

- errors in estimation caused by a \square -representative sample \qquad

Sampling error

- a \qquad showing how precisely a sample \qquad the population, with \qquad sampling errors resulting from \qquad samples and/or when the data clusters closely around the mean; also called \qquad

Reliability

- the to which a study or experiment performed many times would have
\qquad results

Guided Practice

Example 1

Mr. DiCenso wants to establish baseline measures for the 21 students in his psychology class on a memory test, but he doesn't have time to test all students. How could Mr. DiCenso use a standard deck of 52 cards to select a simple random sample of 10 students? The students in Mr. DiCenso's class are listed as follows.

Tim	Brion	Victoria	Nick	Quinn	Gigi	Jose
Alex	Andy	Michael	Stella	Claire	Lara	Noemi
Eliza	Morgan	Ian	Dominic	DeSean	Rafiq	Gillian

- Assign a \square to each student.

Assign a card \square (for example, $\square \square$ to each student, as shown in the following table.

Student	Card	Student	Card	Student	Card
Tim	Ace of spades	Michael	7 of spades	DeSean	King of hearts
Alex	King of spades	lan	6 of spades	Gigi	Queen of hearts
Eliza	Queen of spades	Nick	5 of spades	Lara	Jack of hearts
Brion	Jack of spades	Stella	4 of spades	Rafiq	10 of hearts
Andy	10 of spades	Dominic	3 of spades	Jose	9 of hearts
Morgan	9 of spades	Quinn	2 of spades	Noemi	8 of hearts
Victoria	8 of spades	Claire	Ace of hearts	Gillian	7 of hearts

-

 select cards.
the 21 cards thoroughly, then select the \square cards.
Identify the students whose names were assigned to the chosen cards.
Samples may vary;
6 of spades: Ian King of hearts: DeSean
9 of spades: Morgan Jack of hearts: Lara 10 of spades: Andy Ace of hearts: Claire 4 of spades: Stella Queen of hearts: Gigi 2 of spades: Quinn 7 of spades: Michael
The selected cards indicate which students will be a part of the \qquad

Example 2

The Bennett family believes that they have a special genetic makeup because there are 5 children in the family and all of them are girls. Perform a simulation of 100 families with 5 children. Assume the probability that an individual child is a girl is 50%. Determine the percent of families in which all 5 children are girls. Decide whether having 5 girls in a family of 5 children is probable, somewhat unusual, or highly improbable.

Create a simulation using \square

1. Let \qquad represent each of the 5 children. Put all \square into your hands and
\qquad them vigorously.
2. the coins into the \qquad and let them land. Each coin toss represents family. Let a coin that turns up \qquad represent a girl and a coin that turns up \qquad represent a boy.
3. In a table, record the number of \qquad for each coin toss. Repeat for a total of 100 coin tosses. The table below is the results of 100 coin tosses. Each number indicates the \qquad of girls in that family. This sample is only \qquad possible sample; other \qquad will be different.

3	2	2	1	2	2	2	2	1	3
2	1	2	1	2	5	3	2	2	3
3	0	1	4	3	4	2	4	2	3
3	3	0	1	2	2	2	2	3	2
4	4	3	4	2	4	1	1	4	3
1	2	1	4	2	2	3	1	3	5
3	4	3	4	1	2	2	3	2	4
5	3	2	2	4	1	1	3	4	2
2	2	1	2	3	3	2	4	3	1
3	3	2	3	3	2	3	3	2	4

- Determine the of families with all 5 children of the same gender. Since the table only records the number of girls, a \square in the table represents all boys and a \square represents all girls. In the given sample, there are \square families with all boys and \square families with all girls; therefore, there are \square families with all 5 children of the same gender.

To find the percent, divide the number of families with all 5 children of the same gender by \qquad the \qquad

- Determine the percent of families with \square girls.
Among the 100 families in the given sample, \square have all girls. To find the percent, divide the number of families with 5 girls by \qquad the \qquad
-

your results.
It is important to note that there is no way to \qquad with certainty whether the belief that the Bennetts have a special genetic makeup is correct. \square on this sample, we can only \qquad that in families who have 5 children, there is a \square chance that all 5 children would be the same gender, and that there is a \square chance that families with 5 children would have 5 girls.

Sampling methods that are not \square
\square sampling:
-
\square sampling

- \square sampling
- \quad sampling

All involy \square n assignment
\square e meet the criteria of simple random sampling.
sample:

- \square occurring groups of population members are chosen for the sample.
- This method involves dividing the population into groups by \qquad or other
\qquad criteria.
- \square of the groups are \qquad selected, while others are \qquad
- This method allows each member of the population to have a \square chance of selection.
- \quad
sampling is usually chosen to \square excessive travel or \square the disruption that a study may cause.

sample:

- a sample drawn by selecting people or objects from a list, chart, or grouping at a \qquad interval.
- This method involves using a natural \square of population members, such as by arrival time, location, or placement on a list.
- Once the \square is established, every \qquad member (e.g., every fifth member) is chosen.
- If the starting number is population has a nearly \qquad chance of selection.
sampling is usually chosen when relative \qquad in a list may be related to key variables in a study, or when it is useful to a researcher to \qquad data gathering.

sample:
- the population is \qquad into \qquad so that the people or objects within the subgroup share relevant characteristics.
- This method involves \qquad members of the population by \square that may be related to of interest.
- Once the groups are formed, members of each group are \qquad selected so that the number of members in the sample with given characteristics is $\square|l| l$ the number of members in the population with the
- \square sampling has been used for many years to predict the results of state and national \square
- a sample for which members are \square in \square to minimize time, effort, or expense.
-

 sampling involves gathering data \qquad and \qquad

- The of \square sampling is that, in some cases, preliminary estimates of population parameters can be obtained \qquad
- The main of convenience sampling is that the samples are prone to
 As a result, the estimates obtained are \qquad accurate and the statistics are difficult to \qquad
- It is unwise to use a sampling method simply \square it is the most \qquad Unless the sample is \qquad of the population of interest, the statistics that are produced may be \qquad
- A sample is \qquad always a better sample. There is less variability in measures taken from a large sample, but if the large sample is \square the researcher will likely obtain estimates that are \qquad

