Normal Distribution Curve

There are many cases where the data tends to be around a \square with no \square left or right, and it gets close to a " \square Distribution".

The ' \qquad " is a \square Distribution. And the histogram above shows some data that follows it closely, but not perfectly (which is usual).

Many things closely follow a Normal Distribution:

- \square of people
- \square of things produced by machines
- \square in measurements
- \square pressure
- \square on a test

We say the data is ' \square distributed":

The Normal Distribution has:
\square $=$ \square $=$ \square
\square about the center
50% of values \square than the mean and $50 \% \square$ than the mean

Standard Deviations

The Standard Deviation is a \qquad of how \qquad out numbers are. When we calculate the standard deviation we find that (generally) the following is true:

New symbol for mean \square

New symbol for standard deviation \square

Under the Curve

The area under the curve relates to a \square (given as a \square) that a given data is \square each of the standard deviation bars.

\% of the data values lie below (to the left of) the mean.

\% of the data values lie above (to the right of) the mean.
\square \% of the data values lie with in ONE standard deviation the mean.

\% of the data values lie with in TWO standard deviation the mean.
$\%$ of the data values lie with in THREE standard deviation the mean.

It is good to know the standard deviation, because we can say that any value is:

- \quad to be within \square standard deviation (68 out of 100 should be)
- \square to be within \square standard deviations (95 out of 100 should be)
- almost \square within \square standard deviations (997 out of 1000 should be)

2000 freshman at the University of Montevallo took a biology test. The scores were distributed normally with a mean of 76 and a standard deviation of 5 . Label the mean and 3 standard deviation s for the mean.

What percent of scores are between 71 and 81? \square

What percent of scores are between 61 and 76? \square

What percent of scores are less than 61 ? \square

What percent of scores are greater than 86 ? \square

Approximately how many students scored between 61 and 71?
Between what two scores is 95% of students scores fall?

A score of 76 corresponds to what percentile of student scores?.

