Normal Distribution Curve

There are many cases where the data tends to be around a ______ with no____left or right, and it gets close to a "_____ Distribution".

above shows some data that follows it closely, but not perfectly (which is usual).

Many things closely follow a Normal Distribution:

- of people
- of things produced by machines
- in measurements
- pressure
- on a test

We say the data is distributed":

The Normal Distribution has:

Standard Deviations

The Standard Deviation is a _____ of how _____ out numbers are. When we calculate the standard deviation we find that (generally) the following is true:

Under the Curve

It is good to know the standard deviation, because we can say that any value is:

- ______to be within standard deviation (68 out of 100 should be)
- to be within standard deviations (95 out of 100 should be)
- almost within standard deviations (997 out of 1000 should be)

2000 freshman at the University of Montevallo took a biology test. The scores were distributed normally with a mean of 76 and a standard deviation of 5. Label the mean and 3 standard deviation s for the mean.

What percent of scores are between 71 and 81?
What percent of scores are between 61 and 76?
What percent of scores are less than 61?
What percent of scores are greater than 86?
Approximately how many students scored between 61 and 71?
Between what two scores is 95% of students scores fall?
A score of 76 corresponds to what percentile of student scores?