A sample is a \qquad of the population. The \square selection of samples often determines \qquad . It is possible that one sample is more \qquad while other samples are simply not. Conclusions based on statistical samples can be little more than guesses, and some are reckless conclusions in life-or-death matters; in many cases, it all comes down to whether the sample selected is \square In medicine, business, sports, science, and other fields, important decisions are based on statistical information drawn from \qquad

Statistics-There are two definitions but they are related.

1. The \qquad of the collection, organization, and interpretation of numerical data, especially the analysis of population characteristics by inference from sampling.
2. \square data.

On a higher level, the field of statistics concerns the \qquad and \square of describing and making \qquad about a population from a \qquad

An inference is a \square reached upon the basis of \qquad and reasoning.

A measure of the population that we are interested in is a \square a numerical value that represents the \qquad in a \square.

We use different notation for \square
Sample: A statistics and \square of a set the mean of a sample population is \square
Population: The \square standard deviation of a sample population is \square
set
the mean of a population is \square
standard deviation of a
population is \square

objects, or items in the sample are \square to the \qquad of the people, population.
For sampling to be \square it must also produce \square measures.
\square refers to the \square to which a study or experiment, performed many times, would have similar results. When \square samples are used, there is often great \square and little \square among the statistics that are found.
Meaning that it is \qquad reliable.

is a measure showing how \square a sample reflects the with smaller sampling errors resulting from large samples and/or when the data clusters closely around the \qquad

In general, estimates of a population based on data from \square samples are more
\qquad than estimates from \qquad samples.

In estimating the \qquad of a | \qquad a sample size \square than \square is recommended. In estimating \square a \qquad sample is desirable.
\square is the \square to which the results obtained from a sample measure what they are intended to measure.

The validity of inferences made about a population depends greatly on the amount of
\square or lack of \square in sampling procedures.
$A \square \quad$ is a sample in which some members of the population have a
chance of \square in the sample than others. \qquad
\qquad in the sample than others.

High levels of blood glucose are a strong predictor for developing diabetes. Blood glucose is typically tested after fasting overnight, and the test result is called a fasting glucose level. A doctor wants to determine the percentage of his patients who have high glucose levels. He reviewed the glucose test results for 25 patients to determine how many of them had a fasting glucose level greater than $100 \mathrm{mg} / \mathrm{dL}$ (milligrams per deciliter). He recorded each patient's fasting glucose level in a table,

Identify the population, parameter, sample, and statistic of interest in this situation, and then calculate the percent of patients in the sample with a fasting glucose level above 100 $\mathrm{mg} / \mathrm{dL}$.

Patient glucose levels in mg/dL

99.9	105.4	131.8	79.7	66.6
116.7	111.5	98.1	86.4	76.4
105.8	107.0	95.7	87.6	99.1
75.4	106.2	87.6	89.2	72.4
58.9	86.8	66.0	53.6	88.1

Identify the population in this situation.
\square
Identify the parameter in this situation.
\square
Identify the sample in this situation.
\square

Identify the statistic of interest in this situation.

Calculate the statistic of interest.

where x represents the number of patients with a fasting glucose level greater than $100 \mathrm{mg} / \mathrm{dL}$ and n represents the number of patients in the sample.

Note: It is important to recognize that this may be an \qquad estimate because the patients in sample may not be \qquad of \square the patients in the doctor's practice.

