A sample is a	of the population. The	selection of sa	mples often
determines]. It is possible that one sam	nple is more	while other
samples are simpl [,]	y not. Conclusions based on st	atistical samples	can be little more
than guesses, and	some are reckless conclusion	s in life-or-death	n matters; in many
cases, it all come	s down to whether the sample	selected is	. In
medicine, busines	s, sports, science, and other	fields, important	decisions are based
on statistical info	rmation drawn from		

Statistics-There are two definitions but they are related.

1. The ______ of the collection, organization, and interpretation of numerical data, especially the analysis of population characteristics by inference from sampling.

2. data.

On a higher level, the field of statistics concerns the _____and _____ of describing and making ______about a population from a _____.

An inference is a reached upon the basis of and reasoning.

A measure of the population that we are interested in is a _____, a numerical value that represents the _____ in a ____.

We use different notation for	statistics and	parameters.
Sample: Aof a set	Population: The	set
the mean of a sample population is	the mean of a po	pulation is
standard deviation of a sample population is	standard devia population is	tion of a

A	is a sample in which the	of the people,
objects, or items in the	sample areto the	of the
population.		
For sampling to be	, it must also produce	measures.
over & over ag	join % different Sam	
refers to the	to which a study or exp	periment, performed many
times, would have simila	r results. Whensamples a	re used, there is often
great and litt	le among the statis	tics that are found.
Meaning that it is r	eliable	
Small Sam		

is a measure showing how _____ a sample reflects the _____, with smaller sampling errors resulting from large samples and/or when the data clusters closely around the _____.

In general, estimates of a population based on data from samples are more
than estimates from samples.
In estimating the of a f , a sample size than is
recommended. In estimating, asample is desirable.
is the
A is a sample in which some members of the population have a chance of in the sample than others.
> how "slanted" toward a conclusion

High levels of blood glucose are a strong predictor for developing diabetes. Blood glucose is typically tested after fasting overnight, and the test result is called a fasting glucose level. A doctor wants to determine the percentage of his patients who have high glucose levels. He reviewed the glucose test results for 25 patients to determine how many of them had a fasting glucose level greater than 100 mg/dL (milligrams per deciliter). He recorded each patient's fasting glucose level in a table,

Identify the population, parameter, sample, and statistic of interest in this situation, and then calculate the percent of patients in the sample with a fasting glucose level above 100 mg/dL.

Patient glucose levels in mg/dL						
99.9	105.4	131.8	79.7	66.6		
116.7	111.5	98.1	86.4	76.4		
105.8	107.0	95.7	87.6	99.1		
75.4	106.2	87.6	89.2	72.4		
58.9	86.8	66.0	53.6	88.1		

sample space.notebook

Identify the population in this situation.

Identify the parameter in this situation.

Identify the sample in this situation.

Identify the statistic of interest in this situation.

Calculate the statistic of interest.

where x represents the number of patients with a fasting glucose level greater than 100 mg/dL and n represents the number of patients in the sample.

Note: It is important to recognize that this may be an estimate because the patients in sample may not be of the patients in the doctor's practice.